sexta-feira, 26 de abril de 2019






Calor específico é uma grandeza física intensiva que define a variação térmica de determinada substância ao receber determinada quantidade de calor. Também é chamado de capacidade térmica mássica. A unidade no SI é  (joule por quilograma e por kelvin). Uma unidade usual bastante utilizada para calores específicos é cal/(g.°C) (caloriapor grama e por grau Celsius).[1]
Em rigor há dois calores específicos distintos: o calor específico a volume constante  e o calor específico a pressão constante . O calor específico a pressão constante é geralmente um pouco maior do que o calor específico a volume constante, sendo a afirmação verdadeira para materiais com coeficientes de dilatação volumétrico positivos. Em virtude do aumento de volume associado à dilatação térmica, parte da energia fornecida na forma de calor é usada para realizar trabalho contra o ambiente a pressão constante e não para aumentar a temperatura em si; o aumento de temperatura experimentado para um sistema à pressão constante é pois menor do que aquele que seria experimentado pelo mesmo sistema imposto o volume constante uma vez mantida a mesma transferência de energia na forma de calor. No caso do calor específico a volume constante, toda a energia recebida na forma de calor é utilizada para elevar a temperatura do sistema, o que faz com que  — em virtude de sua definição — seja um pouco menor. A diferença entre os dois é particularmente importante em gases; em sólidos e líquidos sujeitos a pequenas variações de volume frente às variações de temperatura, os valores dos dois na maioria das vezes se confundem por aproximação. Em análise teórica e de precisão, contudo, é importante a diferenciação dos dois.
Materiais com dilatação anômala, como a água entre 0 °C e 4 °C, não obedecem à regra anterior; nestes casos o calor específico a volume constante é então um pouco maior do que o calor específico a pressão constante.

    Formalismo

    O calor específico () de uma substância pode ser definido a partir da capacidade térmica () de um corpo composto por ela como o quociente desta pela massa () desse corpo.[2] Matematicamente,

    ΤGFE [TRANSIÇÕES DE FASES ESPECÍFICAS GRACELI]
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A capacidade térmica, por sua vez, é definida como a razão entre calor recebido e variação de temperatura observada. Assim, o calor específico pode ser expresso como:
    ΤGFE
    X

    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Por essa última relação, nota-se que o calor específico depende do processo pelo qual o calor é cedido à substância. Usando a primeira lei da termodinâmica, com  sendo a pressão, pode-se escrever:
    X
    ΤGFE
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Dois casos particulares são de maior importância. Um deles é o calor específico a volume constante, onde o termo representando o trabalho () é nulo, e pela relação anterior
    X
    ΤGFE
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    O segundo caso é o calor específico a pressão constante. Nesse caso, a equação anterior resulta em
    ΤGFE
    X
    ,
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    onde a nova função de estado

    ΤGFE
    X
      
    x


    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    é entalpia do sistema.[3]
    A distinção entre esses dois calores específicos pode normalmente ser ignorada nas fases sólida e líquida, dado que essas substâncias normalmente sofrem uma variação de volume muito pequena. Gases, no entanto, apresentam grande expansão térmica, sendo sempre necessária a distinção entre ambos os calores específicos.

    Calor específico molar[editar | editar código-fonte]

    Em muitas circunstâncias a unidade mais conveniente para especificar a quantidade de uma substancia é o mol, definido como sendo uma quantidade de 6,02 x 1023 unidades elementares de qualquer substância. Assim, por exemplo um mol de alumínio significa 6,02 x 1023 átomos de alumínio (o átomo é a unidade elementar), e 1 mol de óxido de alumínio significa 6,02 x 1023 fórmulas moleculares do composto.
    Nesses casos, quando a quantidade de substância é expressa em moles, utiliza-se o chamado calor específico molar, que é expresso como sendo a capacidade térmica por mol.[4] De forma análoga com o calor específico por massa, o calor específico molar depende do processo ao qual a substância é submetida; define-se de mesma forma as quantidades a pressão constante e a volume constante.

    Calor específico molar a volume constante[editar | editar código-fonte]

    O calor específico molar a volume constante é definido como:
    ΤGFE
    X
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Sendo que,
    ΤGFE
    X
    x


    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D  (primeira lei da termodinâmica) com o trabalho  temos ,por se tratar de um processo a volume constante.
    onde:
    •  é o calor absorvido ou cedido por uma amostra de  moles de um gás;
    •  é a variação de temperatura resultante;
    •  é a variação de energia interna.
    Para um gás monoatômico ideal,

    ΤGFE
    X
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Calor específico molar a pressão constante[editar | editar código-fonte]

    O calor específico molar a pressão constante é definido como:
    ΤGFE
    X
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Sendo que temos as seguintes relações:
     (primeira lei da termodinâmica) e . Relacionando o trabalho com a equação dos gases ideais  ficamos com . Substituindo a as respectivas equações mais a equação  
    ΤGFE
    X
    ΤGFE
    na equação  ficamos com
    onde:
    •  é o calor absorvido ou cedido por uma amostra de  mols de um gás;
    •  é a variação de temperatura resultante;
    •  é a variação de energia interna.

    Regra de Dulong-Petit[editar | editar código-fonte]

    A regra de Dulong-Petit consiste em obter, aproximadamente, o calor específico das substâncias por meio da massa molar:
    ΤGFE
    X

    x


    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Em que:
    •  é o calor específico, em joule por quilograma kelvin (J.kg−1.K−1);
    •  é a constante dos gases reais, equivalente a 8,31 joules por mol kelvin (J.K−1.mol−1);
    •  é a massa molar, em quilograma por mol (kg/mol).

    Determinação experimental do calor específico de uma substância[editar | editar código-fonte]

    Calorímetro
    A capacidade calorífica de um corpo é determinada com ajuda de um calorímetro e um termômetro. Um calorímetro simples (veja a figura) consiste num cilindro metálico polido, colocado num outro cilindro metálico sobre cortiça (para isolamento térmico).[5]
    O cilindro interno é enchido com água ou algum outro líquido de calor específico conhecido. Um corpo de massa m, e capacidade calorífica específica c, aquecido a uma certa temperatura T é imergido no calorímetro de massa m1 e capacidade calorífica c1 na qual a temperatura é medida. Suponha que a temperatura deste líquido de m2 e capacidade calorífica específica c2 no calorímetro é T’ antes de o corpo ser emergido nele, e quando a temperatura do líquido e do corpo é a mesma, a temperatura torna-se Tf.
    Da lei de conservação da energia e considerando o calor dissipado na vizinhança pelo objecto quente Q, o calor recebido pela água e pelo calorímetro que seja respectivamente Q1 e Q2 , mostra que a capacidade calorífica específica é

    ΤGFE
    X
    X
    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Fatores que afetam o calor específico[editar | editar código-fonte]

    Representação de uma molécula vibrando.
    Moléculas sofrem muitas vibrações características internas. A energia potencial armazenada nestes graus de liberdade internos contribui para uma amostra do conteúdo de energia, mas não a sua temperatura. Graus de liberdade mais internos tendem a aumentar a capacidade de uma substância de calor específico, contanto que as temperaturas são suficientemente elevadas para superar os efeitos quânticos.

    Graus de liberdade[editar | editar código-fonte]

    O comportamento termodinâmico das moléculas dos gases monoatômicos, como hélio, e dos gases diatômicos, como o nitrogênio, é muito diferente. Em gases monoatômicos, a energia interna é unicamente para movimentos de translação. Os movimentos são movimentos de translação em um espaço tridimensional em que as partículas se movem e trocam energia em colisões elásticas da mesma forma como fariam bolas de borracha colocadas num recipiente que foi agitado fortemente. (Veja animação aqui). Estes movimentos nas dimensões X, Y, e Z significam que os gases monoatômicos tem apenas três graus de liberdade de translação. Moléculas com maior atomicidade, no entanto, tem vários graus de liberdade interna, rotacionais e vibracionais. Elas se comportam como uma população de átomos que podem se mover dentro de uma molécula de formas diferentes (veja a animação à direita). A energia interna é armazenada nesses movimentos internos. Por exemplo, o nitrogênio, que é uma molécula diatômica, tem cinco graus de liberdade: três de translação e dois de rotação interna. Note que a calor específico molar a volume constante do gás monoatômico é , sendo R a constante universal do gás ideal, ao passo que para o valor do nitrogênio (diatômico) vale , o que mostra claramente a relação entre os graus de liberdade e ao calor específico.
     onde  é o número de graus de liberdade.
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Massa molar[editar | editar código-fonte]

    Uma razão pela qual o calor específico tem valores diferentes para diferentes substâncias é a diferença de massas molares, que é a massa de um mol de qualquer elemento, que é diretamente proporcional à massa molecular do elemento, a soma dos valores das massas atômicas da molécula em questão. A energia térmica é armazenada pela existência de átomos ou moléculas de vibração. Se uma substância tem uma massa molar mais leve, em seguida, cada grama de que tem mais átomos ou moléculas disponíveis para armazenar energia. Esta é a razão pela qual o hidrogênio, a substância com menor massa molar tem um calor específico muito elevado. A consequência deste fenômeno é a de que, quando se mede o calor específico em termos molares a diferença entre substâncias torna-se menos acentuada e o calor específico de hidrogênio para de ser atípico. Da mesma forma, as substâncias moleculares (também absorvem calor em seus graus de liberdade internos) pode armazenar grandes quantidades de energia por mol se é moléculas grandes e complexas, e, portanto, seu calor específico medido em massa é menos perceptível . Uma vez que a densidade média de um elemento químico está fortemente relacionada com a sua massa molar, em termos gerais, há uma forte correlação inversa entre a densidade do sólido e o  (calor específico a pressão constante). Lingotes sólidos grandes de baixa densidade tendem a absorver mais calor do que um lingote pequeno de mesma massa, porém com densidade mais elevada que o primeiro, porque contém mais átomos. Por conseguinte, em termos gerais, há uma forte correlação entre o volume de um elemento sólido e a sua capacidade total de calor. No entanto, existem muitos desvios desta correlação.

    As ligações de hidrogênio[editar | editar código-fonte]

    Contendo hidrogênio na sua composição, moléculas polares como o etanol, amônia e água, têm poderosas ligações intermoleculares de hidrogênio quando em sua fase líquida. Estas ligações proporcionam um outro local em que o calor pode ser armazenado como energia potencial de vibração, mesmo em baixas temperaturas comparativamente.

    Impurezas[editar | editar código-fonte]

    No caso de ligas, existem certas condições em que as pequenas impurezas podem alterar grandemente o calor específico medido. As ligas podem mostrar uma diferença marcada no seu comportamento, mesmo que a impureza em questão seja um dos elementos que formam a liga, tais como ligas impuras em semicondutores ferromagnéticos que podem conduzir a medições muito diferentes.
    A tabela abaixo apresenta o calor específico de algumas substâncias à pressão constante de 1 atm.
    SubstânciaCalor Específico (cal/g.°C)
    água1,0
    álcool0,58
    alumínio0,22
    ar0,24
    carbono0,12
    chumbo0,031
    cobre0,094
    ferro0,11
    gelo0,5
    hélio1,25
    hidrogênio3,4
    latão0,092
    madeira0,42
    mercúrio0,033
    nitrogênio0,25
    ouro0,032
    oxigênio0,22
    prata0,056
    rochas0,21
    vidro0,16
    zinco0,093












    mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


    um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

    o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

    O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


    Com isto pode-se dividir a física em quatro grandes fases:

    a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].